
Description of the VDIF Extended Data Version 4:
Multiplexed VDIF Data Validity

Walter Brisken

07 Jan 2016

1 Introduction

The VDIF1 data format has brought a new level of sophistication and flexibility to encapsulation
of VLBI baseband data. Its very high rate of adoption globally has already led to simplication
in exchange of this data. A feature of VDIF that illustrates its flexibility, and that is of key
importance to this proposed extension, is the ability to store fully corner-turned data (e.g., one
thread with many channels), data that has not been corner-turned (e.g., multiple threads, each
with containing a single channel), and partially corner-turned data (multiple threads, each with
multiple channels).

There are cases, involving software that has been built around processing of fully corner-
turned data, where it is advantageous to convert VDIF data that is either not corner-turned or
is partially corner-turned into data that is fully corner-turned. In this document that process
will be called multiplexing. A problem with doing this is that data validity, as indicated by
the “invalid bit” of the VDIF header, becomes impossible to represent with the single “invalid”
bit of the multiplexed frame. The consequence is that a choice must be made by the software
performing the multiplexing: “should invalid data be processed, or should valid data be dis-
carded?” In the case that missing data is very rare this distinction is of little concern, but there
are cases (see below) where a large fraction of data, typically from one thread at a time, is
lost. This document describes VDIF Extended Data Version (EDV) number 4, which provides
a mechanism to handle this.

2 Use cases

There are two general classes of use cases for this VDIF EDV.
The first is intermediate on-disk formats. For various reasons it may be useful to convert

the native output from some backend/recorder system, which may be a single disk file itself or
multiple files that must be interleaved, to a single serialized output. In this step missing frames,
either from individual threads or across all threads, may be inserted such that the output stream
has no gaps in its time sequence. Such needs have arisen in the diagnostics and early use of
Mark6 data (in the “gather” process). The EDV4 will play an especially important role in cases
where one or more disks in the module set becomes unusable between recording and processing.

The second is completely internal use where the EDV4 VDIF variant is never written to
disk. An example is DiFX software correlator. The core of this correlator was built around
datastreams with fully corner-turned data. The effort involved in reengineering DiFX for native
operation on arbitrary input VDIF data is expected to be quite high. The intermediate solution
adopted is for the data reading process to corner-turn the data before sending to the core of
DiFX. EDV4 will allow proper accounting of “data weights” on a per baseband channel basis.

1Defined in document http://vlbi.org/vdif/docs/VDIF_specification_Release_1.1.1.pdf.

1

http://vlbi.org/vdif/docs/VDIF_specification_Release_1.1.1.pdf


2.1 Use case to avoid

It is highly discouraged to make use of this form of VDIF as the native product of any data
source.

3 Implementation

The structure of the VDIF header with EDV4 extension is shown in Table 1. Words 4 through
7 contain the new information being described here; words 0 through 3 remain unchanged and
no change in the VDIF version itself is required.

Byte # 3 2 1 0
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 I1 L1 Seconds from reference epoch30

Word 1 U2 Epoch6 Data frame number in second24

Word 2 Ver3 log2(nchan)5 Data frame length (units of 8 bytes)24
Word 3 C1 Bits/samp-15 Thread Id10 Station Id16

Word 4 EDV=48 Validity mask length8 U16

Word 5 Sync word = 0xACABFEED32

Word 6 High bits of validity mask32

Word 7 Low bits of validity mask32

Table 1: A VDIF frame header when employing EDV 4. Subscripted numbers indicate the
number of bits used by the field. Data in words 0 through 3 are described in the VDIF speci-
fication document. Some abbreviations are used: “I” is the invalid bit, “L” is the legacy VDIF
bit, “U” indicates unused bits, “Ver” indicates the VDIF version, “C” is the complex data bit.
Data in words 4 through 7 form EDV 4. Individual fields are described in the text. The last
two words should be interpreted as a single 64-bit bitfield. Note that all fields use Intel byte
order (little-endian).

There are only three fields of importance:

• Validity mask length: an integer with a value between 1 and 64 (inclusive) indicating
the number of data validity bits.

• Synchronization word: a 32-bit sequence that can be used to ensure (or rediscover)
synchronization of the VDIF data sequence. The value (0xACABFEED) and location
(word 5) of this are the same as employed by EDVs 1 and 3.

• Validity mask: A 64-bit sequence indicating validity of data on a channel-by-channel
basis. In the case that the validity mask length equals the number of channels in the
thread there is a one-to-one mapping of validity mask bit to channel. The mask for the
first channel (channel 0) is stored in the least significant bit of this 64-bit word (bit zero of
word 7). If the bit is set (1) that means valid data is present, otherwise (0) data for this
channel should not be considered valid. The sense of this mask was consciously chosen to
be opposite to that if the “data invalid bit” such that unused bits (bit numbers greater
than or equal to the validity mask length) are left unset (0).

2



3.1 EDV4 and the VDIF “data invalid” bit

The VDIF standard stipulates that EDV data is supplemental and thus it should not be required
for general use. This leaves the question open to how the frame “data invalid” bit should be
set in cases where some, but not all, of the channels within the frame contain valid data. This
choice impacts how downstream consumers of VDIF data that do not respect EDV4 handles
such situations. Since there is no correct answer to this question, and in fact this question is
what led to the development of EDV4, it is suggested here that the software or human producing
data in EDV4 format use their own judgement. Software performing the multiplexing should
allow options so that users can select an algorithm best suited for the particular application.
Such software should also report on the fraction of time an incomplete (but not empty) frame
has been constructed.

3.2 The case of more than 64 channels

In the case that a single VDIF frame contains more than 64 channels the EDV4 concept is
extended by having each bit in the validity mask represent the state of more than one channel.
The number of channels in a single VDIF frame is always a power of two. Thus the number
of channels divided by the 64 would always be an integer, n. The first n channels would
respect the value of the least significant bit in the validity mask, and in general the validity of
channel c (0-based) would be represented by bit bc/nc (also 0-based) of the validity mask. The
same judgement call described above is needed when assigning a single validity bit to multiple
channels. The choice is out of the scope of this document.

3.3 Unused bits

There remains 16 bits of unused space in the EDV4 header. To allow for potential future use of
these slots there is no restriction on their contents. They can be considered to be usage-specific,
and no software should depend on these bits taking on any particular value.

3


	Introduction
	Use cases
	Use case to avoid

	Implementation
	EDV4 and the VDIF ``data invalid'' bit
	The case of more than 64 channels
	Unused bits


