VDIF -VLBI Data Interchange Format

VDIF Task Force: Alan Whitney, MIT (chair) Mark Kettenis, JIVE Chris Phillips, ATNF Mamoru Sekido, NICT

> 2009.06.25 8th Intl e-VLBI Workshop

> > Madrid, Spain

Motivation & Execution

- Variety of VLBI data formats used internationally complicates easy international data transfer
- Internationally constituted VDIF Task Force appointed in Shanghai in June 2008 to study problem and create a recommended uniform <u>transport-independent VLBI data-format standard</u>
- Data-transport standard (VTP?) will be addressed separately
- Combination of data-format and data-transport standards will effectively replace proposed VSI-E

Assumptions

- Data are assumed to be one or more time series of uniformly time-sampled data
- Each time series may have its own sample rate, bits/sample and place of origin (i.e. station)

Major VDIF attributes

- Data may be single-channel or multi-channel
- Number of channels can be arbitrary (i.e. not confined to 2ⁿ)
- Data may be single bit or multi-bit samples
- Data are self-identifying wrt time tag, data source, #bits/sample
- Data can be decoded without external reference
- Data may be discontinuous in time (e.g. pulsar data)
- Data are packetized into Data Frames suitable for on-wire transfer as well as direct disk file storage
- Support data rates up to at least 100Gbps
- Non-VLBI specific; suitable for most any uniformly time-sampled data set

Hierarchical Data Structure

- Aggregate data flow is defined as a Data Stream
- A Data Stream is organized into self-identifying <u>Data Threads</u>
 - Each Data Thread may have its own #channels, sample rate, and bits/sample
- Each Data Thread contains of a serial set of <u>Data Frames</u>
- Each Data Frame consists of a <u>Data Frame Header</u> followed by a <u>Data Array</u>
 - Data Array length may be chosen by user
 - Data Array may contain single-channel or multi-channel data

Illustration of multi-thread VDIF Data Stream

Data Frame Rules

- Each Data Frame has 16/32 byte header followed by a Data Array of user-specified length
- Data Frame length for a single Data Thread is fixed for a particular scan
- #Data Frames per second must be an integer
- Data Frame may not span a second boundary
- Data Frame length must be a multiple of 8 bytes
 - For Ethernet transfer, length would normally be chosen to be <~9000 bytes
 - length is allowed to be as long as one second

Data Frame Header Content

- Time (seconds since specified epoch)
- Frame # within second
- Stream ID
- Station ID (2-char ASCII code)
- 'Data-invalid' marker
- #channels
- Bits/sample
- 'Complex' ('In-phase/Quadrature' channels) data marker
- Data Array length
- VDIF version #
- Optional user-defined 16-byte extension
 - Up to 255 unique user-defined formats may be 'registered' so that they are easily identified
 - registry to be set up at Haystack VSI web site

Data Frame Header Format

Bit 31 (MSB)								Bit 0 (LSB)
Byte 3					rte 2	Byte 1	Byte 0	28
Word 0	I ₁ L ₁ Seconds from reference epoch ₃₀							
Word 1	Un- assigned ₂		Ref Epoch ₆		Data Frame # within second ₂₄			
Word 2	V_3		log ₂ (#chns) ₅		Data Frame length (units of 8 bytes) ₂₄			
Word 3	C ₁ bits/sample-1 ₅		Tl	nread ID ₁₀	Station ID ₁₆			
Word 4	EDV_8				Extended User Data ₂₄			
Word 5	Extended User Data ₃₂							
Word 6	Extended User Data ₃₂							
Word 7	Extended User Data ₃₂							

Byte order: little-endian

Data Array Format

- Data Array format is based <u>solely</u> on the #chans and #bits/sample (as specified in the corresponding Data Array Header)
- Adherence to the Data Array format specification is necessary to ensure that the data are properly interpreted

Data Frame ordering

- Data Frames from a <u>single source</u> will normally be transmitted and received in <u>strict time order</u>
- Data Frames transmitted through a switch or over a network are not guaranteed to arrive in order
- VDIF does not mandate strict Data Frame ordering within a Data Thread or among Data Threads, but some correlators (particularly legacy hardware correlators) may require strict ordering

Usage example 1

- Data Stream with multiple single-channel Data Threads (VLBI2010 model)
 - Supports arbitrary # of channels (one Data Thread per channel)
 - allows better fine-tuning of aggregate data rate for better utilization of e-VLBI transfers
 - Supports 1 to 32 bits/sample (some packing inefficiency for some values of bits/sample)
 - Preferred for new equipment and applications
 - Best compatibility with software correlators

Usage example 2

- Data Stream with one or more multi-channel Data Threads
 - Multiple channels in a single Data Stream
 - Primarily targeted at legacy VLBI data sources
 - Limited to 2^n channels ($0 \le n \le 31$)
 - Limited to 2^k bits/sample ($0 \le k \le 5$)
 - Avoids 'corner turning' requirement
 - Adaptable to support some older equipment

'Simple' VDIF Data Stream

- Each Data Thread within a 'simple' VDIF Data Stream must have <u>same</u>:
 - # of channels
 - #bits/sample
 - data type ('real' or 'complex')
 - #Data Frames/sec
 - Data Frame Header Length
 - Data Array Length
- Expected to be most common usage

 Useful VDIF Format Designator is constructed as "<total sample-data rate> - <total #chans> - <#bits/sample> [- <#threads>]" e.g. 1024-16-2-1 or 1024-16-2 Note similarity to VLBA mode designation

'Compound' VDIF Data Stream

- A 'compound' VDIF Data Stream contains two or more intermixed 'simple' Data Streams, each of which is called a 'Data Group'
- Set of numerical Thread IDs within each Data Group must occupy a unique, non-overlapping range
- Useful VDIF Format Designator is constructed as "DataGroup1 Designator> + <DataGroup2 Designator> +" e.g. 1024-16-2-16+256-8-2

File-naming conventions

- Applies only to data stored in named disk files
- File-name suffix 'vdif'
- Otherwise, should conform to internationally agreed filenaming convention available at http://www.baystack.mit.edu/tech/ylbi/ysi/index.html
- Example:

gre53_ef_scan035_fd=1024-16-2.vdif which specifies Experiment: gre53 Station: ef Scan name: scan035 VDIF Format Designator: 1024-16-2

VDIF Status

- VDIF Draft Release 1.0 has been available for community comment for ~6 months
 - Available at http://www.haystack.mit.edu/tech/vlbi/vsi/index.html
 - Has been carefully reviewed by several key members of global VLBI community
 - Final ratification hoped for at this meeting
 - Ratification important because it allows FPGA/hardware designers to proceed

The Next Step – VLBI Transport Protocol (VTP)

- VTP is complementary to VDIF for data transported over high-speed networks
- What are the possible characteristics of VTP?
 - Transparently support current and future transport protocols (i.e. TCP, UDP, Tsunami, etc, etc)
 - Multi-cast support?
 - Negotiate (via TCP?) a mutually acceptable transport protocol between data source and data sink
 - Normally will be one VDIF Data Frame per transport packet
 - Define a 'wrapper' around each VDIF Data Frame to enhance data accountability
 - Support easy integration into VEX and SNAP command streams
 - Must be simple, easy to implement and easy to use
- Goal is to have draft VTP spec ready in a few months

Generalized 10GigE Data Distribution Concept

dBBC/ DBE/ VDBE

dBBC/ DBE/ VDBE Thank you